1. 10.2 线性回归api初步使用

1.1. 学习目标

  • 知道线性回归api的简单使用

1.2. 1 线性回归API

  • sklearn.linear_model.LinearRegression()
    • LinearRegression.coef_:回归系数

1.3. 2 举例

image-20230711133715553

1.3.1. 2.1 步骤分析

  • 1.获取数据集
  • 2.数据基本处理(该案例中省略)
  • 3.特征工程(该案例中省略)
  • 4.机器学习
  • 5.模型评估(该案例中省略)

1.3.2. 2.2 代码过程

  • 导入模块
from sklearn.linear_model import LinearRegression
  • 构造数据集
x = [[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]]
y = [84.2, 80.6, 80.1, 90, 83.2, 87.6, 79.4, 93.4]
  • 机器学习-- 模型训练
# 实例化API
estimator = LinearRegression()
# 使用fit方法进行训练
estimator.fit(x,y)

estimator.coef_

estimator.predict([[100, 80]])

1.4. 3 小结

  • sklearn.linear_model.LinearRegression()
    • LinearRegression.coef_:回归系数
Copyright © MISIN 2022 | 豫ICP备2023040351号-1 all right reserved,powered by Gitbook该文件修订时间: 2024-01-12 07:58:59

results matching ""

    No results matching ""