1. 10.2 线性回归api初步使用
1.1. 学习目标
1.2. 1 线性回归API
- sklearn.linear_model.LinearRegression()
- LinearRegression.coef_:回归系数
1.3. 2 举例
1.3.1. 2.1 步骤分析
- 1.获取数据集
- 2.数据基本处理(该案例中省略)
- 3.特征工程(该案例中省略)
- 4.机器学习
- 5.模型评估(该案例中省略)
1.3.2. 2.2 代码过程
from sklearn.linear_model import LinearRegression
x = [[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]]
y = [84.2, 80.6, 80.1, 90, 83.2, 87.6, 79.4, 93.4]
estimator = LinearRegression()
estimator.fit(x,y)
estimator.coef_
estimator.predict([[100, 80]])
1.4. 3 小结
- sklearn.linear_model.LinearRegression()
- LinearRegression.coef_:回归系数